Abstract
BACKGROUND:
Atrial fibrillation (AF) is the most common cardiac arrhythmia. The cardiac sodium channel, Na(V)1.5, plays a pivotal role in setting the conduction velocity and the initial depolarization of the cardiac myocytes. We hypothesized that early-onset lone AF was associated with genetic variation in SCN5A.
METHODS AND RESULTS:
The coding sequence of SCN5A was sequenced in 192 patients with early-onset lone AF. Eight nonsynonymous mutations (T220I, R340Q, T1304M, F1596I, R1626H, D1819N, R1897W, and V1951M) and 2 rare variants (S216L in 2 patients and F2004L) were identified. Of 11 genopositive probands, 6 (3.2% of the total population) had a variant previously associated with long QT syndrome type 3 (LQTS3). The prevalence of LQTS3-associated variants in the patients with lone AF was much higher than expected, compared with the prevalence in recent exome data (minor allele frequency, 1.6% versus 0.3%; P=0.003), mainly representing the general population. The functional effects of the mutations were analyzed by whole cell patch clamp in HEK293 cells; for 5 of the mutations previously associated with LQTS3, patch-clamp experiments showed an increased sustained sodium current, suggesting a mechanistic overlap between LQTS3 and early-onset lone AF. In 9 of 10 identified mutations and rare variants, we observed compromised biophysical properties affecting the transient peak current.
CONCLUSIONS:
In a cohort of patients with early-onset lone AF, we identified a high prevalence of SCN5A mutations previously associated with LQTS3. Functional investigations of the mutations revealed both compromised transient peak current and increased sustained current.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. The cardiac sodium channel, Na(V)1.5, plays a pivotal role in setting the conduction velocity and the initial depolarization of the cardiac myocytes. We hypothesized that early-onset lone AF was associated with genetic variation in SCN5A.
METHODS AND RESULTS:
The coding sequence of SCN5A was sequenced in 192 patients with early-onset lone AF. Eight nonsynonymous mutations (T220I, R340Q, T1304M, F1596I, R1626H, D1819N, R1897W, and V1951M) and 2 rare variants (S216L in 2 patients and F2004L) were identified. Of 11 genopositive probands, 6 (3.2% of the total population) had a variant previously associated with long QT syndrome type 3 (LQTS3). The prevalence of LQTS3-associated variants in the patients with lone AF was much higher than expected, compared with the prevalence in recent exome data (minor allele frequency, 1.6% versus 0.3%; P=0.003), mainly representing the general population. The functional effects of the mutations were analyzed by whole cell patch clamp in HEK293 cells; for 5 of the mutations previously associated with LQTS3, patch-clamp experiments showed an increased sustained sodium current, suggesting a mechanistic overlap between LQTS3 and early-onset lone AF. In 9 of 10 identified mutations and rare variants, we observed compromised biophysical properties affecting the transient peak current.
CONCLUSIONS:
In a cohort of patients with early-onset lone AF, we identified a high prevalence of SCN5A mutations previously associated with LQTS3. Functional investigations of the mutations revealed both compromised transient peak current and increased sustained current.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Circulation: Cardiovascular Genetics |
Vol/bind | 5 |
Udgave nummer | 4 |
Sider (fra-til) | 450-459 |
Antal sider | 10 |
ISSN | 1942-325X |
DOI | |
Status | Udgivet - aug. 2012 |
Emneord
- Det Sundhedsvidenskabelige Fakultet