High-precision Mg isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—implications for the relative and absolute Mg isotope composition of the bulk silicate Earth

Martin Bizzarro, Chad Paton, Kirsten Kolbjørn Larsen, Martin Schiller, Anne Marie-Pierre Emilie Trinquier, David Garf Ulfbeck

    104 Citationer (Scopus)

    Abstract

    We report novel methods for the chemical purification of Mg from silicate rocks by ion-exchange chromatography, and high-precision analysis of Mg-isotopes by high-resolution multiple collector inductively coupled plasma source mass spectrometry (HR-MC-ICPMS). Using these methods, we have measured the relative and absolute Mg-isotope composition of a number of terrestrial and extraterrestrial materials, including international reference rock standards as well as pure Mg standards, olivine crystals separated from a mantle-derived spinel lherzolite (J12 olivine), one enstatite chondrite, a martian shergottite and sea water samples. Repeated analyses of terrestrial and extraterrestrial samples demonstrate that it is possible to routinely measure the relative Mg-isotope composition of silicate materials with an external reproducibility of 2.5 and 20 ppm for the m26Mg* and m25Mg values, respectively (m notation is the per 106 deviation from a reference material). Analyses of bulk mantle-derived rocks as well as a martian shergottite and an enstatite chondrite define a restricted range in m25Mg of ¿120 ¿ 28 ppm (2sd) relative to the DSM-3 reference standard (m25,26Mg 1/4 0), suggesting that the Mg-isotope composition of inner solar system bulk planetary materials is uniform within the resolution of our analyses. We have determined the absolute Mg-isotope composition of the J12 olivine, two CI chondrites as well as the DSM-3 and Cambridge-1 reference standards using
    a mixed 26Mg-24Mg double-spike. The differences between the absolute 25Mg/24Mg ratios of the various materials analyzed relative to the DSM-3 standard are in excellent agreement with results obtained by the sample-standard bracketing method. Based on the averages obtained for the J12 olivine separates, we estimate the absolute Mg-isotope composition for Earth’s mantle – and hence that of the bulk silicate Earth – to be 25Mg/24Mg 1/4 0.126896 ¿ 0.000025 and 26Mg/24Mg 1/4 0.139652 ¿ 0.000033. Given the restricted range of m25Mg obtained for bulk planetary material by the sample-standard bracketing technique and the excellent agreement between the data obtained by the relative and absolute methods, we propose that these new values represent the absolute Mg-isotope composition of the bulk inner solar system. Using the absolute Mg-isotope composition of the J12 olivine, we calculate the isotopic abundances of Mg as 24Mg 1/4 0.789548 ¿ 0.000026, 25Mg 1/4 0.100190 ¿ 0.000018, and 26Mg 1/4 0.110261 ¿ 0.000023. Based on this result, we have calculated an atomic weight for Mg of 24.305565 ¿ 0.000045,
    which is marginally heavier than previous estimates but a factor of 10 more precise.
    OriginalsprogEngelsk
    TidsskriftJournal of Analytical Atomic Spectrometry
    Vol/bind26
    Udgave nummer3
    Sider (fra-til)565-577
    Antal sider13
    ISSN0267-9477
    DOI
    StatusUdgivet - mar. 2011

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'High-precision Mg isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—implications for the relative and absolute Mg isotope composition of the bulk silicate Earth'. Sammen danner de et unikt fingeraftryk.

    Citationsformater