TY - JOUR
T1 - High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii
AU - Casuso, Rafael A
AU - Plaza-Díaz, Julio
AU - Ruiz-Ojeda, Francisco J
AU - Aragón-Vela, Jerónimo
AU - Robles-Sanchez, Cándido
AU - Nordsborg, Nikolai Baastrup
AU - Hebberecht, Marina
AU - Salmeron, Luis M
AU - Huertas, Jesus R
N1 - CURIS 2017 NEXS 266
PY - 2017/10
Y1 - 2017/10
N2 - We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (p < 0.01 at all time points) and CK (p < 0.01 at post) than HIHVT, but neither SIT nor HIHVT altered systemic hydroperoxides. Additionally, neither SIRT3 nor SOD2 mRNA levels increased, while PGC-1α transcription increased at 3 h after SIT (p < 0.01) and after HIHVT (p < 0.001). However, PGC-1α protein was higher after HIHVT than after SIT (p < 0.05). Moreover, the AMPKpTHR172/AMPK ratio increased at post after SIT (p < 0.05), whereas this effect was delayed after HIHVT as it increased after 3 h (p < 0.05). In addition, VEGF transcription was higher in response to HIHVT (p < 0.05). In conclusion, SIT induces higher muscular stress than HIHVT without increasing systemic oxidation. In addition, HIHVT may induce more robust oxidative adaptations through PGC-1α and AMPK.
AB - We aimed to test whether high-intensity high-volume training (HIHVT) swimming would induce more robust signaling than sprint interval training (SIT) swimming within the m. triceps brachii due to lower metabolic and oxidation. Nine well-trained swimmers performed the two training procedures on separate randomized days. Muscle biopsies from m. triceps brachii and blood samples were collected at three different time points: a) before the intervention (pre), b) immediately after the swimming procedures (post) and c) after 3 h of rest (3 h). Hydroperoxides, creatine kinase (CK), and lactate dehydrogenase (LDH) were quantified from blood samples, and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and the AMPKpTHR172/AMPK ratio were quantified by Western blot analysis. PGC-1α, sirtuin 3 (SIRT3), superoxide-dismutase 2 (SOD2), and vascular endothelial growth factor (VEGF) mRNA levels were also quantified. SIT induced a higher release of LDH (p < 0.01 at all time points) and CK (p < 0.01 at post) than HIHVT, but neither SIT nor HIHVT altered systemic hydroperoxides. Additionally, neither SIRT3 nor SOD2 mRNA levels increased, while PGC-1α transcription increased at 3 h after SIT (p < 0.01) and after HIHVT (p < 0.001). However, PGC-1α protein was higher after HIHVT than after SIT (p < 0.05). Moreover, the AMPKpTHR172/AMPK ratio increased at post after SIT (p < 0.05), whereas this effect was delayed after HIHVT as it increased after 3 h (p < 0.05). In addition, VEGF transcription was higher in response to HIHVT (p < 0.05). In conclusion, SIT induces higher muscular stress than HIHVT without increasing systemic oxidation. In addition, HIHVT may induce more robust oxidative adaptations through PGC-1α and AMPK.
KW - Journal Article
U2 - 10.1371/journal.pone.0185494
DO - 10.1371/journal.pone.0185494
M3 - Journal article
C2 - 28973039
SN - 1932-6203
VL - 12
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 10
M1 - e0185494
ER -