Abstract
We study a hermitian $(n+1)$-matrix model with plaquette interaction, $\sum_{i=1}^n MA_iMA_i$. By means of a conformal transformation we rewrite the model as an $O(n)$ model on a random lattice with a non polynomial potential. This allows us to solve the model exactly. We investigate the critical properties of the plaquette model and find that for $n\in]-2,2]$ the model belongs to the same universality class as the $O(n)$ model on a random lattice.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Nuclear Physics B |
Vol/bind | 479 |
Udgave nummer | 3 |
Sider (fra-til) | 683-696 |
ISSN | 0550-3213 |
DOI | |
Status | Udgivet - 2 maj 1996 |
Emneord
- hep-th