TY - JOUR
T1 - Hepatic NAD+ levels and NAMPT abundance are unaffected during prolonged high-fat diet consumption in C57BL/6JBomTac mice
AU - Dall, Morten
AU - Penke, Melanie
AU - Sulek, Karolina
AU - Matz-Soja, Madlen
AU - Holst, Birgitte
AU - Garten, Antje
AU - Kiess, Wieland
AU - Treebak, Jonas T.
N1 - Copyright © 2018 Elsevier B.V. All rights reserved.
PY - 2018/9/15
Y1 - 2018/9/15
N2 - Dietary supplementation of nicotinamide adenine dinucleotide (NAD+) precursors has been suggested as a treatment for non-alcoholic fatty liver disease and obesity. In the liver, NAD+is primarily generated by nicotinamide phosphoribosyltransferase (NAMPT), and hepatic levels of NAMPT and NAD+have been reported to be dependent on age and body composition. The aim of the present study was to identify time course-dependent changes in hepatic NAD content and NAD+salvage capacity in mice challenged with a high-fat diet (HFD). We fed 7-week-old C57BL/6JBomTac male mice either regular chow or a 60% HFD for 6, 12, 24, and 48 weeks, and we evaluated time course-dependent changes in whole body metabolism, liver steatosis, and abundance of hepatic NAD-associated metabolites and enzymes. Mice fed a 60% HFD rapidly accumulated fat and hepatic triglycerides with associated changes in respiratory exchange ratio (RER) and a disruption of the circadian feeding pattern. The HFD did not alter hepatic NAD+levels, but caused a decrease in NADP+and NADPH levels. Decreased NADP+content was not accompanied by alterations in NAD kinase (NADK) abundance in HFD-fed mice, but NADK levels increased with age regardless of diet. NAMPT protein abundance did not change with age or diet. HFD consumption caused a severe decrease in protein lysine malonylation after six weeks, which persisted throughout the experiment. This decrease was not associated with changes in SIRT5 abundance. In conclusion, hepatic NAD+salvage capacity is resistant to long-term HFD feeding, and hepatic lipid accumulation does not compromise the hepatic NAD+pool in HFD-challenged C57BL/6JBomTac male mice.
AB - Dietary supplementation of nicotinamide adenine dinucleotide (NAD+) precursors has been suggested as a treatment for non-alcoholic fatty liver disease and obesity. In the liver, NAD+is primarily generated by nicotinamide phosphoribosyltransferase (NAMPT), and hepatic levels of NAMPT and NAD+have been reported to be dependent on age and body composition. The aim of the present study was to identify time course-dependent changes in hepatic NAD content and NAD+salvage capacity in mice challenged with a high-fat diet (HFD). We fed 7-week-old C57BL/6JBomTac male mice either regular chow or a 60% HFD for 6, 12, 24, and 48 weeks, and we evaluated time course-dependent changes in whole body metabolism, liver steatosis, and abundance of hepatic NAD-associated metabolites and enzymes. Mice fed a 60% HFD rapidly accumulated fat and hepatic triglycerides with associated changes in respiratory exchange ratio (RER) and a disruption of the circadian feeding pattern. The HFD did not alter hepatic NAD+levels, but caused a decrease in NADP+and NADPH levels. Decreased NADP+content was not accompanied by alterations in NAD kinase (NADK) abundance in HFD-fed mice, but NADK levels increased with age regardless of diet. NAMPT protein abundance did not change with age or diet. HFD consumption caused a severe decrease in protein lysine malonylation after six weeks, which persisted throughout the experiment. This decrease was not associated with changes in SIRT5 abundance. In conclusion, hepatic NAD+salvage capacity is resistant to long-term HFD feeding, and hepatic lipid accumulation does not compromise the hepatic NAD+pool in HFD-challenged C57BL/6JBomTac male mice.
KW - Journal Article
U2 - 10.1016/j.mce.2018.01.025
DO - 10.1016/j.mce.2018.01.025
M3 - Journal article
C2 - 29408602
SN - 0303-7207
VL - 473
SP - 245
EP - 256
JO - Molecular and Cellular Endocrinology
JF - Molecular and Cellular Endocrinology
ER -