Abstract
MapReduce is a popular scalable processing framework for large-scale data. In this paper, we first briefly present our efforts on rectifying the traditional batch-oriented MapRe-duce framework for low-latency data stream processing. We investigated how to utilize such a MapReduce-style platform for fast sensor data processing by taking the DEBS Grand Challenge 2013 as an example. Both the analysis and experiments verify that our approach can obtain highly scalable solutions.
Originalsprog | Engelsk |
---|---|
Titel | DEBS’13 : Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems |
Antal sider | 6 |
Forlag | Association for Computing Machinery |
Publikationsdato | 2013 |
Sider | 313-318 |
ISBN (Elektronisk) | 978-1-4503-1758-0 |
DOI | |
Status | Udgivet - 2013 |
Udgivet eksternt | Ja |
Begivenhed | 7th ACM International Conference on Distributed Event-Based Systems - Arlington, USA Varighed: 29 jun. 2013 → 3 jul. 2013 Konferencens nummer: 7 |
Konference
Konference | 7th ACM International Conference on Distributed Event-Based Systems |
---|---|
Nummer | 7 |
Land/Område | USA |
By | Arlington |
Periode | 29/06/2013 → 03/07/2013 |