Grand challenge: MapReduce-style processing of fast sensor data

Kasper Grud Skat Madsen, Li Su, Yongluan Zhou

7 Citationer (Scopus)

Abstract

MapReduce is a popular scalable processing framework for large-scale data. In this paper, we first briefly present our efforts on rectifying the traditional batch-oriented MapRe-duce framework for low-latency data stream processing. We investigated how to utilize such a MapReduce-style platform for fast sensor data processing by taking the DEBS Grand Challenge 2013 as an example. Both the analysis and experiments verify that our approach can obtain highly scalable solutions.

OriginalsprogEngelsk
TitelDEBS’13 : Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems
Antal sider6
ForlagAssociation for Computing Machinery
Publikationsdato2013
Sider313-318
ISBN (Elektronisk)978-1-4503-1758-0
DOI
StatusUdgivet - 2013
Udgivet eksterntJa
Begivenhed7th ACM International Conference on Distributed Event-Based Systems - Arlington, USA
Varighed: 29 jun. 20133 jul. 2013
Konferencens nummer: 7

Konference

Konference7th ACM International Conference on Distributed Event-Based Systems
Nummer7
Land/OmrådeUSA
ByArlington
Periode29/06/201303/07/2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Grand challenge: MapReduce-style processing of fast sensor data'. Sammen danner de et unikt fingeraftryk.

Citationsformater