Geometric multicut

Mikkel Abrahamsen, Panos Giannopoulos, Maarten Löffler, Günter Rote

    1 Citationer (Scopus)

    Abstract

    We study the following separation problem: Given a collection of colored objects in the plane, compute a shortest "fence" F, i.e., a union of curves of minimum total length, that separates every two objects of different colors. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC k-CUT, where k is the number of different colors, as it can be seen as a geometric analogue to the well-studied multicut problem on graphs. We first give an O(n^4 log^3 n)-time algorithm that computes an optimal fence for the case where the input consists of polygons of two colors and n corners in total. We then show that the problem is NP-hard for the case of three colors. Finally, we give a (2-4/3k)-approximation algorithm.
    OriginalsprogEngelsk
    Titel46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
    RedaktørerChristel Baier, Ioannis Chatzigiannakis, Paola Flocchini, Stefano Leonardi
    Antal sider15
    ForlagSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
    Publikationsdato2019
    Artikelnummer9
    ISBN (Elektronisk)9783959771092
    DOI
    StatusUdgivet - 2019
    Begivenhed46th International Colloquium on Automata, Languages, and Programming, ICALP 2019 - Patras, Grækenland
    Varighed: 9 jul. 201912 jul. 2019

    Konference

    Konference46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
    Land/OmrådeGrækenland
    ByPatras
    Periode09/07/201912/07/2019
    SponsorCenter for Perspicuous Computing (CPEC), University of Patras
    NavnLeibniz International Proceedings in Informatics, LIPIcs
    Vol/bind132
    ISSN1868-8969

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Geometric multicut'. Sammen danner de et unikt fingeraftryk.

    Citationsformater