Genetic and structural insights into broad neutralization of hepatitis C virus by human VH1-69 antibodies

Netanel Tzarum, Erick Giang, Leopold Kong, Linling He, Jannick Prentoe, Elias Augestad, Yuanzi Hua, Shaun Castillo, Georg M. Lauer, Jens Bukh, Jiang Zhu, Ian A. Wilson, Mansun Law*

*Corresponding author af dette arbejde
    37 Citationer (Scopus)
    80 Downloads (Pure)

    Abstract

    An effective vaccine to the antigenically diverse hepatitis C virus (HCV) must target conserved immune epitopes. Here, we investigate cross-neutralization of HCV genotypes by broadly neutralizing antibodies (bNAbs) encoded by the relatively abundant human gene family VH1-69. We have deciphered the molecular requirements for cross-neutralization by this unique class of human antibodies from crystal structures of HCV E2 in complex with bNAbs. An unusually high binding affinity is found for germ line-reverted versions of VH1-69 precursor antibodies, and neutralization breadth is acquired during affinity maturation. Deep sequencing analysis of an HCV-immune B cell repertoire further demonstrates the importance of the VH1-69 gene family in the generation of HCV bNAbs. This study therefore provides critical insights into immune recognition of HCV with important implications for rational vaccine design.

    OriginalsprogEngelsk
    Artikelnummereaav1882
    TidsskriftScience Advances
    Vol/bind5
    Udgave nummer1
    Antal sider12
    ISSN2375-2548
    DOI
    StatusUdgivet - 2019

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Genetic and structural insights into broad neutralization of hepatitis C virus by human VH1-69 antibodies'. Sammen danner de et unikt fingeraftryk.

    Citationsformater