Abstract
The whipworms Trichuris trichiura and Trichuris suis in humans and pigs, respectively, are
believed to be two different species yet closely related. Morphologically, adult worms, eggs
and larvae of the two species are indistinguishable. The aim of this study was to examine the genetic variation of Trichuris sp. mainly recovered from natural infected pigs and humans. Worm material isolated from humans and pigs living in the same geographical region in Uganda were analyzed by PCR, cloning and sequencing. Measurements of morphometric characters were also performed. The analysis of the ITS-2 (internal transcribed spacer) region showed a high genetic variation in the human-derived worms with two sequence types, designated type 1 and type 2, differing with up to 45%, the type 2 being identical to the sequence found in pig-derived worms. A single human-derived worm showed exclusively the type 2-genotype (T. suis-type) and three cases of ‘heterozygote’ worms in humans were identified. However, the analysis showed that sympatric Trichuris primarily assorted with host origin. Sequence analysis of a part of the genetically conserved ¿-tubulin gene confirmed two separate populations/species but also showed that the ‘heterozygote’ worms had a T. suis-like ¿-tubulin gene. A PCR-RFLP on the ITS-2 region was developed, that could distinguish between worms of the pig, human and ‘heterozygote’ type. The data suggest that Trichuris in pigs and humans belong to two different populations (i.e. are two different species). However, the data presented also suggest that cross-infections of humans with T. suis takes place. Further studies on sympatric Trichuris populations are highly warranted in order to explore transmission dynamics and unravel the zoonotic potential of T. suis.
believed to be two different species yet closely related. Morphologically, adult worms, eggs
and larvae of the two species are indistinguishable. The aim of this study was to examine the genetic variation of Trichuris sp. mainly recovered from natural infected pigs and humans. Worm material isolated from humans and pigs living in the same geographical region in Uganda were analyzed by PCR, cloning and sequencing. Measurements of morphometric characters were also performed. The analysis of the ITS-2 (internal transcribed spacer) region showed a high genetic variation in the human-derived worms with two sequence types, designated type 1 and type 2, differing with up to 45%, the type 2 being identical to the sequence found in pig-derived worms. A single human-derived worm showed exclusively the type 2-genotype (T. suis-type) and three cases of ‘heterozygote’ worms in humans were identified. However, the analysis showed that sympatric Trichuris primarily assorted with host origin. Sequence analysis of a part of the genetically conserved ¿-tubulin gene confirmed two separate populations/species but also showed that the ‘heterozygote’ worms had a T. suis-like ¿-tubulin gene. A PCR-RFLP on the ITS-2 region was developed, that could distinguish between worms of the pig, human and ‘heterozygote’ type. The data suggest that Trichuris in pigs and humans belong to two different populations (i.e. are two different species). However, the data presented also suggest that cross-infections of humans with T. suis takes place. Further studies on sympatric Trichuris populations are highly warranted in order to explore transmission dynamics and unravel the zoonotic potential of T. suis.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Veterinary Parasitology |
Vol/bind | 188 |
Udgave nummer | 1-2 |
Sider (fra-til) | 68-77 |
Antal sider | 10 |
ISSN | 0304-4017 |
DOI | |
Status | Udgivet - 13 aug. 2012 |
Emneord
- Det tidligere LIFE
- Zoonosis
- Trichuris suis
- Trichuris trichiura
- ITS-2
- PCR-RFLP
- ß-tubulin
- Cross-infection