From Bayes to PDEs in image warping

Mads Nielsen, Bo Markussen

2 Citationer (Scopus)

Abstract

In many disciplines of computer vision, such as stereo vision, flow computation, medical image registration, the essential computational problem is the geometrical alignment of images. In this chapter we describe how such an alignment may be obtained as statistical optimal through solving a partial differential equation (PDE) in the matching function. We treat different choices of matching criteria such as minimal square difference, maximal correlation, maximal mutual information, and several smoothness criteria. All are treated from a Bayes point of view leading to a functional minimization problem solved through an Euler-Lagrange formulation as the solution to a PDE. We try in this chapter to collect the most used methodologies and draw conclusions on their properties and similarities.
OriginalsprogEngelsk
TitelHandbook of Mathematical Models in Computer Vision
UdgivelsesstedUSA
ForlagSpringer
Publikationsdato2006
Sider259-272
ISBN (Trykt)978-0-387-26371-7
ISBN (Elektronisk)978-0-387-28831-4
DOI
StatusUdgivet - 2006

Fingeraftryk

Dyk ned i forskningsemnerne om 'From Bayes to PDEs in image warping'. Sammen danner de et unikt fingeraftryk.

Citationsformater