TY - JOUR
T1 - Fourier Transform Infrared Spectroscopy and Theoretical Study of Dimethylamine Dimer in the Gas Phase
AU - Du, Lin
AU - Kjærgaard, Henrik Grum
PY - 2011/11/10
Y1 - 2011/11/10
N2 - Dimethylamine (DMA) has been studied by gas-phase Fourier transform infrared (FTIR) spectroscopy. We have identified a spectral transition that is assigned to the DMA dimer. The IR spectra of the dimer in the gas phase are obtained by spectral subtraction of spectra recorded at different pressures. The enthalpy of hydrogen bond formation was obtained for the DMA dimer by temperature-dependence measurements. We complement the experimental results with ab initio and anharmonic local mode model calculations of monomer and dimer. Compared to the monomer, our calculations show that in the dimer the N-H bond is elongated, and the NH-stretching fundamental shifts to a lower wavenumber. More importantly, the weak NH-stretching fundamental transition has a pronounced intensity increase upon complexation. However, the first NH-stretching overtone transition is not favored by the same intensity enhancement, and we do not observe the first NH-stretching overtone of the dimer. On the basis of the measured and calculated intensity of the NH-stretching transition of the dimer, the equilibrium constant for dimerization at room temperature was determined.
AB - Dimethylamine (DMA) has been studied by gas-phase Fourier transform infrared (FTIR) spectroscopy. We have identified a spectral transition that is assigned to the DMA dimer. The IR spectra of the dimer in the gas phase are obtained by spectral subtraction of spectra recorded at different pressures. The enthalpy of hydrogen bond formation was obtained for the DMA dimer by temperature-dependence measurements. We complement the experimental results with ab initio and anharmonic local mode model calculations of monomer and dimer. Compared to the monomer, our calculations show that in the dimer the N-H bond is elongated, and the NH-stretching fundamental shifts to a lower wavenumber. More importantly, the weak NH-stretching fundamental transition has a pronounced intensity increase upon complexation. However, the first NH-stretching overtone transition is not favored by the same intensity enhancement, and we do not observe the first NH-stretching overtone of the dimer. On the basis of the measured and calculated intensity of the NH-stretching transition of the dimer, the equilibrium constant for dimerization at room temperature was determined.
M3 - Journal article
SN - 1089-5639
VL - 115
SP - 12097
EP - 12104
JO - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
JF - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
ER -