TY - JOUR
T1 - FMNL formins boost lamellipodial force generation
AU - Kage, Frieda
AU - Winterhoff, Moritz
AU - Dimchev, Vanessa
AU - Mueller, Jan
AU - Thalheim, Tobias
AU - Freise, Anika
AU - Brühmann, Stefan
AU - Kollasser, Jana
AU - Block, Jennifer
AU - Dimchev, Georgi A
AU - Geyer, Matthias
AU - Schnittler, Hans-Joachim
AU - Brakebusch, Cord
AU - Stradal, Theresia E B
AU - Carlier, Marie-France
AU - Sixt, Michael
AU - Käs, Josef
AU - Faix, Jan
AU - Rottner, Klemens
PY - 2017/3/22
Y1 - 2017/3/22
N2 - Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.
AB - Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.
KW - Journal Article
U2 - 10.1038/ncomms14832
DO - 10.1038/ncomms14832
M3 - Journal article
C2 - 28327544
SN - 2041-1723
VL - 8
JO - Nature Communications
JF - Nature Communications
M1 - 14832
ER -