TY - JOUR
T1 - Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1
AU - Glubb, Dylan M
AU - Maranian, Mel J
AU - Michailidou, Kyriaki
AU - Pooley, Karen A
AU - Meyer, Kerstin B
AU - Kar, Siddhartha
AU - Carlebur, Saskia
AU - O'Reilly, Martin
AU - Betts, Joshua A
AU - Hillman, Kristine M
AU - Kaufmann, Susanne
AU - Beesley, Jonathan
AU - Canisius, Sander
AU - Hopper, John L
AU - Southey, Melissa C
AU - Tsimiklis, Helen
AU - Apicella, Carmel
AU - Schmidt, Marjanka K
AU - Broeks, Annegien
AU - Hogervorst, Frans B
AU - van der Schoot, C Ellen
AU - Muir, Kenneth
AU - Lophatananon, Artitaya
AU - Stewart-Brown, Sarah
AU - Siriwanarangsan, Pornthep
AU - Fasching, Peter A
AU - Ruebner, Matthias
AU - Ekici, Arif B
AU - Beckmann, Matthias W
AU - Peto, Julian
AU - dos-Santos-Silva, Isabel
AU - Fletcher, Olivia
AU - Johnson, Nichola
AU - Pharoah, Paul D P
AU - Bolla, Manjeet K
AU - Wang, Qin
AU - Dennis, Joe
AU - Sawyer, Elinor J
AU - Tomlinson, Ian
AU - Kerin, Michael J
AU - Miller, Nicola
AU - Burwinkel, Barbara
AU - Marme, Frederik
AU - Yang, Rongxi
AU - Surowy, Harald
AU - Guénel, Pascal
AU - Truong, Thérèse
AU - Bojesen, Stig E
AU - Nordestgaard, Børge G
AU - Nielsen, Sune Fallgaard
AU - GENICA Network
N1 - Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
PY - 2015/1/8
Y1 - 2015/1/8
N2 - Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
AB - Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
KW - Alleles
KW - Breast Neoplasms
KW - Case-Control Studies
KW - Cell Line, Tumor
KW - Chromosome Mapping
KW - Chromosomes, Human, Pair 5
KW - Continental Population Groups
KW - Female
KW - Genetic Predisposition to Disease
KW - Genome-Wide Association Study
KW - Genotyping Techniques
KW - Humans
KW - MAP Kinase Kinase Kinase 1
KW - MCF-7 Cells
KW - Polymorphism, Single Nucleotide
KW - Promoter Regions, Genetic
KW - Quantitative Trait Loci
KW - Risk Factors
U2 - 10.1016/j.ajhg.2014.11.009
DO - 10.1016/j.ajhg.2014.11.009
M3 - Journal article
C2 - 25529635
SN - 0002-9297
VL - 96
SP - 5
EP - 20
JO - American Journal of Human Genetics
JF - American Journal of Human Genetics
IS - 1
ER -