Abstract
We prove that the sequence (1/Fn+2)n0 of reciprocals of the Fibonacci numbers is a moment sequence of a certain discrete probability measure and we identify the orthogonal polynomials as little q-Jacobi polynomials with q=1-5/1+5. We prove that the corresponding kernel polynomials have integer coefficients, and from this we deduce that the inverse of the corresponding Hankel matrices (1/Fi+j+2) have integer entries. We prove analogous results for the Hilbert matrices.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Arab Journal of Mathematical Sciences |
Vol/bind | 17 |
Udgave nummer | 2 |
Sider (fra-til) | 75-88 |
ISSN | 1319-5166 |
DOI | |
Status | Udgivet - jul. 2011 |
Emneord
- Det Natur- og Biovidenskabelige Fakultet