Fibonacci numbers and orthogonal polynomials

6 Citationer (Scopus)

Abstract

We prove that the sequence (1/Fn+2)n0 of reciprocals of the Fibonacci numbers is a moment sequence of a certain discrete probability measure and we identify the orthogonal polynomials as little q-Jacobi polynomials with q=1-5/1+5. We prove that the corresponding kernel polynomials have integer coefficients, and from this we deduce that the inverse of the corresponding Hankel matrices (1/Fi+j+2) have integer entries. We prove analogous results for the Hilbert matrices.

OriginalsprogEngelsk
TidsskriftArab Journal of Mathematical Sciences
Vol/bind17
Udgave nummer2
Sider (fra-til)75-88
ISSN1319-5166
DOI
StatusUdgivet - jul. 2011

Emneord

  • Det Natur- og Biovidenskabelige Fakultet

Fingeraftryk

Dyk ned i forskningsemnerne om 'Fibonacci numbers and orthogonal polynomials'. Sammen danner de et unikt fingeraftryk.

Citationsformater