TY - JOUR
T1 - Fast Methods for Prediction of Aldehyde Oxidase-Mediated Site-of-Metabolism
AU - Montefiori, Marco
AU - Lyngholm-Kjærby, Casper
AU - Long, Anthony
AU - Olsen, Lars
AU - Jørgensen, Flemming Steen
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Aldehyde Oxidase (AO) is an enzyme involved in the metabolism of aldehydes and N-containing heterocyclic compounds. Many drug compounds contain heterocyclic moieties, and AO metabolism has lead to failure of several late-stage drug candidates. Therefore, it is important to take AO-mediated metabolism into account early in the drug discovery process, and thus, to have fast and reliable models to predict the site of metabolism (SOM). We have collected a dataset of 78 substrates of human AO with a total of 89 SOMs and 347 non-SOMs and determined atomic descriptors for each compound. The descriptors comprise NMR shielding and ESP charges from density functional theory (DFT), NMR chemical shift from ChemBioDraw, and Gasteiger charges from RDKit. Additionally, atomic accessibility was considered using 2D-SASA and relative span descriptors from SMARTCyp. Finally, stability of the product, the metabolite, was determined with DFT and also used as a descriptor. All descriptors have AUC larger than 0.75. In particular, descriptors related to the chemical shielding and chemical shift (AUC = 0.96) and ESP charges (AUC = 0.96) proved to be good descriptors. We recommend two simple methods to identify the SOM for a given molecule: 1) use ChemBioDraw to calculate the chemical shift or 2) calculate ESP charges or chemical shift using DFT. The first approach is fast but somewhat difficult to automate, while the second is more time-consuming, but can easily be automated. The two methods predict correctly 93% and 91%, respectively, of the 89 experimentally observed SOMs.
AB - Aldehyde Oxidase (AO) is an enzyme involved in the metabolism of aldehydes and N-containing heterocyclic compounds. Many drug compounds contain heterocyclic moieties, and AO metabolism has lead to failure of several late-stage drug candidates. Therefore, it is important to take AO-mediated metabolism into account early in the drug discovery process, and thus, to have fast and reliable models to predict the site of metabolism (SOM). We have collected a dataset of 78 substrates of human AO with a total of 89 SOMs and 347 non-SOMs and determined atomic descriptors for each compound. The descriptors comprise NMR shielding and ESP charges from density functional theory (DFT), NMR chemical shift from ChemBioDraw, and Gasteiger charges from RDKit. Additionally, atomic accessibility was considered using 2D-SASA and relative span descriptors from SMARTCyp. Finally, stability of the product, the metabolite, was determined with DFT and also used as a descriptor. All descriptors have AUC larger than 0.75. In particular, descriptors related to the chemical shielding and chemical shift (AUC = 0.96) and ESP charges (AUC = 0.96) proved to be good descriptors. We recommend two simple methods to identify the SOM for a given molecule: 1) use ChemBioDraw to calculate the chemical shift or 2) calculate ESP charges or chemical shift using DFT. The first approach is fast but somewhat difficult to automate, while the second is more time-consuming, but can easily be automated. The two methods predict correctly 93% and 91%, respectively, of the 89 experimentally observed SOMs.
KW - Aldehyde oxidase
KW - Chemical shielding
KW - Density functional theory
KW - Drug metabolism
KW - ESP charges
KW - Sites of metabolism
KW - Solvent accessible surface area
U2 - 10.1016/j.csbj.2019.03.003
DO - 10.1016/j.csbj.2019.03.003
M3 - Journal article
C2 - 30949305
AN - SCOPUS:85062995054
SN - 2001-0370
VL - 17
SP - 345
EP - 351
JO - Computational and Structural Biotechnology Journal
JF - Computational and Structural Biotechnology Journal
ER -