TY - JOUR
T1 - Fast Ca2+ responses in astrocyte end-feet and neurovascular coupling in mice
AU - Lind, Barbara Lykke
AU - Jessen, Sanne Barsballe
AU - Lønstrup, Micael
AU - Joséphine, Charlène
AU - Bonvento, Gilles
AU - Lauritzen, Martin
PY - 2018/2
Y1 - 2018/2
N2 - Cerebral blood flow (CBF) is regulated by the activity of neurons and astrocytes. Understanding how these cells control activity-dependent increases in CBF is crucial to interpreting functional neuroimaging signals. The relative importance of neurons and astrocytes is debated, as are the functional implications of fast Ca2+ changes in astrocytes versus neurons. Here, we used two-photon microscopy to assess Ca2+ changes in neuropil, astrocyte processes, and astrocyte end-feet in response to whisker pad stimulation in mice. We also developed a pixel-based analysis to improve the detection of rapid Ca2+ signals in the subcellular compartments of astrocytes. Fast Ca2+ responses were observed using both chemical and genetically encoded Ca2+ indicators in astrocyte end-feet prior to dilation of arterioles and capillaries. A low dose of the NMDA receptor antagonist (5R,10s)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK801) attenuated fast Ca2+ responses in the neuropil and astrocyte processes, but not in astrocyte end-feet, and the evoked CBF response was preserved. In addition, a low dose of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), an agonist for the extrasynaptic GABAA receptor (GABAAR), increased CBF responses and the fast Ca2+ response in astrocyte end-feet but did not affect Ca2+ responses in astrocyte processes and neuropil. These results suggest that fast Ca2+ increases in the neuropil and astrocyte processes are not necessary for an evoked CBF response. In contrast, as local fast Ca2+ responses in astrocyte end-feet are unaffected by MK801 but increase via GABAAR-dependent mechanisms that also increased CBF responses, we hypothesize that the fast Ca2+ increases in end-feet adjust CBF during synaptic activity.
AB - Cerebral blood flow (CBF) is regulated by the activity of neurons and astrocytes. Understanding how these cells control activity-dependent increases in CBF is crucial to interpreting functional neuroimaging signals. The relative importance of neurons and astrocytes is debated, as are the functional implications of fast Ca2+ changes in astrocytes versus neurons. Here, we used two-photon microscopy to assess Ca2+ changes in neuropil, astrocyte processes, and astrocyte end-feet in response to whisker pad stimulation in mice. We also developed a pixel-based analysis to improve the detection of rapid Ca2+ signals in the subcellular compartments of astrocytes. Fast Ca2+ responses were observed using both chemical and genetically encoded Ca2+ indicators in astrocyte end-feet prior to dilation of arterioles and capillaries. A low dose of the NMDA receptor antagonist (5R,10s)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-hydrogen-maleate (MK801) attenuated fast Ca2+ responses in the neuropil and astrocyte processes, but not in astrocyte end-feet, and the evoked CBF response was preserved. In addition, a low dose of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), an agonist for the extrasynaptic GABAA receptor (GABAAR), increased CBF responses and the fast Ca2+ response in astrocyte end-feet but did not affect Ca2+ responses in astrocyte processes and neuropil. These results suggest that fast Ca2+ increases in the neuropil and astrocyte processes are not necessary for an evoked CBF response. In contrast, as local fast Ca2+ responses in astrocyte end-feet are unaffected by MK801 but increase via GABAAR-dependent mechanisms that also increased CBF responses, we hypothesize that the fast Ca2+ increases in end-feet adjust CBF during synaptic activity.
KW - astrocyte end-feet
KW - blood flow regulation
KW - calcium imaging
KW - in vivo
KW - pixel detection
U2 - 10.1002/glia.23246
DO - 10.1002/glia.23246
M3 - Journal article
C2 - 29058353
AN - SCOPUS:85038021867
SN - 0894-1491
VL - 66
SP - 348
EP - 358
JO - Glia
JF - Glia
IS - 2
ER -