Fast and Compact Exact Distance Oracle for Planar Grap

Vincent Pierre Cohen-Addad, Søren Dahlgaard, Christian Wulff-Nilsen

18 Citationer (Scopus)

Abstract

For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n 5/3)-space distance oracle which answers exact distance queries in O(log n) time for n-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space (i.e., space O(n 2- ) for some constant 0) either required query time polynomial in n or could only answer approximate distance queries.Furthermore, we show how to trade-off time and space: For any S ϵ n 3/2, we show how to obtain an S-space distance 5/2 oracle that answers queries in time O(S n 3/2 log n). This is a polynomial improvement over the previous planar distance oracles with o(n 1/4) query time.

OriginalsprogEngelsk
Titel2017 IEEE 58th Annual IEEE Symposium on Foundations of Computer Science (FOcS)
ForlagIEEE
Publikationsdato10 nov. 2017
Sider962-973
DOI
StatusUdgivet - 10 nov. 2017
Begivenhed58th Annual IEEE Symposium on Foundations of Computer Science - Berkeley, USA
Varighed: 15 okt. 201717 okt. 2017
Konferencens nummer: 58

Konference

Konference58th Annual IEEE Symposium on Foundations of Computer Science
Nummer58
Land/OmrådeUSA
ByBerkeley
Periode15/10/201717/10/2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Fast and Compact Exact Distance Oracle for Planar Grap'. Sammen danner de et unikt fingeraftryk.

Citationsformater