Farrell–Jones via Dehn fillings

Yago Antolín, Rémi Coulon, Giovanni Gandini

1 Citationer (Scopus)

Abstract

Following the approach of Dahmani, Guirardel and Osin, we extend the group theoretical Dehn filling theorem to show that the pre-images of infinite order subgroups have a certain structure of a free product. We then apply this result to establish the Farrell–Jones conjecture for groups hyperbolic relative to a family of residually finite subgroups satisfying the Farrell–Jones conjecture, partially recovering a result of Bartels
OriginalsprogEngelsk
TidsskriftJournal of Topology and Analysis
Vol/bind10
Udgave nummer04
Sider (fra-til)873-895
ISSN1793-5253
DOI
StatusUdgivet - 1 dec. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Farrell–Jones via Dehn fillings'. Sammen danner de et unikt fingeraftryk.

Citationsformater