TY - JOUR
T1 - EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS
AU - De Fine Licht, Henrik H
AU - Schiøtt, Morten
AU - Mueller, Ulrich G
AU - Boomsma, Jacobus J
N1 - KEYWORDS
Decomposition • diffuse coevolution • fungus-growing ants • Leucocoprinus gongylophorus • mutualism
PY - 2010
Y1 - 2010
N2 - Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major break-down of cell-walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.
AB - Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major break-down of cell-walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.
U2 - 10.1111/j.1558-5646.2010.00948.x
DO - 10.1111/j.1558-5646.2010.00948.x
M3 - Journal article
C2 - 20067517
SN - 0014-3820
VL - 64
SP - 2055
EP - 2069
JO - Evolution
JF - Evolution
IS - 7
ER -