Evolution equations with anisotropic distributions and diffusion PCA

4 Citationer (Scopus)

Abstract

This paper presents derivations of evolution equations for the family of paths that in the Diffusion PCA framework are used for approximating data likelihood. The paths that are formally interpreted as most probable paths generalize geodesics in extremizing an energy functional on the space of differentiable curves on a manifold with connection. We discuss how the paths arise as projections of geodesics for a (non bracket-generating) sub-Riemannian metric on the frame bundle. Evolution equations in coordinates for both metric and cometric formulations of the sub-Riemannian geometry are derived. We furthermore show how rank-deficient metrics can be mixed with an underlying Riemannian metric, and we use the construction to show how the evolution equations can be implemented on finite dimensional LDDMM landmark manifolds.

OriginalsprogEngelsk
TitelGeometric science of information : Second International Conference, GSI 2015, Palaiseau, France, October 28–30, 2015, Proceedings
RedaktørerFrank Nielsen, Frédéric Barbaresco
Antal sider9
ForlagSpringer Science+Business Media
Publikationsdato2015
Sider3-11
ISBN (Trykt)978-3-319-25039-7
ISBN (Elektronisk)978-3-319-25040-3
DOI
StatusUdgivet - 2015
BegivenhedInternational Conference, GSI 2015 - Palaiseau, Frankrig
Varighed: 28 okt. 201530 okt. 2015
Konferencens nummer: 2

Konference

KonferenceInternational Conference, GSI 2015
Nummer2
Land/OmrådeFrankrig
ByPalaiseau
Periode28/10/201530/10/2015
NavnLecture notes in computer science
Vol/bind9389
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Evolution equations with anisotropic distributions and diffusion PCA'. Sammen danner de et unikt fingeraftryk.

Citationsformater