Abstract
Cnidarians are often used as model animals in studies of eye and photopigment evolution. Most cnidarians display photosensitivity at some point in their lifecycle ranging from extraocular photoreception to image formation in camera-type eyes. The available information strongly suggests that some cnidarians even possess multiple photosystems. The evidence is strongest within Cubomedusae where all known species posses 24 eyes of four morphological types. Physiological experiments show that each cubomedusan eye type likely constitutes a separate photosystem controlling separate visually guided behaviors. Further, the visual system of cubomedusae also includes extraocular photoreception. The evidence is supported by immunocytochemical and molecular data indicating multiple photopigments in cubomedusae as well as in other cnidarians. Taken together, available data suggest that multiple photosystems had evolved already in early eumetazoans and that their original level of organization was discrete sets of special-purpose eyes and/or photosensory cells
Originalsprog | Engelsk |
---|---|
Bogserie | International Review of Cell and Molecular Biology |
Vol/bind | 280 |
Sider (fra-til) | 41-78 |
ISSN | 1937-6448 |
DOI | |
Status | Udgivet - 2010 |