TY - JOUR
T1 - Evidence for impaired CARD15 signalling in Crohn's disease without disease linked variants
AU - Seidelin, Jakob Benedict
AU - Broom, Oliver Jay
AU - Olsen, Jørgen
AU - Nielsen, Ole Haagen
N1 - Keywords: Acetylmuramyl-Alanyl-Isoglutamine; Crohn Disease; Cytokines; Exons; Genetic Variation; Genotype; Humans; Inflammation; Interleukin-1beta; MAP Kinase Signaling System; Monocytes; NF-kappa B; Nod2 Signaling Adaptor Protein; RNA, Messenger; Signal Transduction
PY - 2009
Y1 - 2009
N2 - BACKGROUND: Sensing of muramyl dipeptide (MDP) is impaired in Crohn's disease (CD) patients with disease-linked variants of the CARD15 (caspase activation and recruitment domain 15) gene. Animal studies suggest that normal CARD15 signalling prevents inflammatory bowel disease, and may be important for disease development in CD. However, only a small fraction of CD patients carry the disease linked CARD15 variants. The aim of this study was thus to investigate if changes could be found in CARD15 signalling in patients without disease associated CARD15 variants. METHODOLOGY/PRINCIPAL FINDINGS: By mapping the response to MDP in peripheral monocytes obtained from CD patients in remission not receiving immunosuppresives, an impaired response to MDP was found in patients without disease linked CARD15 variants compared to control monocytes. This impairment was accompanied by a decreased activation of IkappaB kinase alpha/beta (IKKalpha/beta), the initial step in the nuclear factor kappaB (NFkappaB) pathway, whereas activation of mitogen-activated protein (MAP)-kinases was unaffected. MDP additionally stimulates the inflammasome which is of importance for processing of cytokines. The inflammasome was constitutively activated in CD, but unresponsive to MDP both in CD and control monocytes. CONCLUSIONS/SIGNIFICANCE: These results suggest that inhibited MDP-dependent pathways in CD patients not carrying the disease-associated CARD15 variants might be of importance for the pathogenesis of CD. The results reveal a dysfunctional immune response in CD patients, not able to sense relevant stimuli on the one hand, and on the other hand possessing constitutively active cytokine processing.
AB - BACKGROUND: Sensing of muramyl dipeptide (MDP) is impaired in Crohn's disease (CD) patients with disease-linked variants of the CARD15 (caspase activation and recruitment domain 15) gene. Animal studies suggest that normal CARD15 signalling prevents inflammatory bowel disease, and may be important for disease development in CD. However, only a small fraction of CD patients carry the disease linked CARD15 variants. The aim of this study was thus to investigate if changes could be found in CARD15 signalling in patients without disease associated CARD15 variants. METHODOLOGY/PRINCIPAL FINDINGS: By mapping the response to MDP in peripheral monocytes obtained from CD patients in remission not receiving immunosuppresives, an impaired response to MDP was found in patients without disease linked CARD15 variants compared to control monocytes. This impairment was accompanied by a decreased activation of IkappaB kinase alpha/beta (IKKalpha/beta), the initial step in the nuclear factor kappaB (NFkappaB) pathway, whereas activation of mitogen-activated protein (MAP)-kinases was unaffected. MDP additionally stimulates the inflammasome which is of importance for processing of cytokines. The inflammasome was constitutively activated in CD, but unresponsive to MDP both in CD and control monocytes. CONCLUSIONS/SIGNIFICANCE: These results suggest that inhibited MDP-dependent pathways in CD patients not carrying the disease-associated CARD15 variants might be of importance for the pathogenesis of CD. The results reveal a dysfunctional immune response in CD patients, not able to sense relevant stimuli on the one hand, and on the other hand possessing constitutively active cytokine processing.
U2 - 10.1371/journal.pone.0007794
DO - 10.1371/journal.pone.0007794
M3 - Journal article
C2 - 19907652
SN - 1932-6203
VL - 4
SP - e7794
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 11
ER -