Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are glutamate-gated cation channels that mediate fast excitatory synaptic transmission in the central nervous system. AMPARs are tetramers formed by homo- or heteromeric assembly of GluA1-4 subunits to produce multiple subtypes with varying biophysical properties. Polyamine toxins such as joro spider toxins, philanthotoxins (PhTXs), and argiotoxins are use-dependent ion channel blockers of AMPARs widely employed as highly potent antagonists of GluA2-lacking receptor subtypes. In addition to this use, recent findings have indicated that a philanthotoxin analog, PhTX-74, can distinguish among GluA2-containing AMPAR subtypes in the presence of the prototypical transmembrane AMPAR regulatory protein γ-2 (or stargazin). Thus, PhTX-74 may be of potential use in studies of the neurobiological role of GluA2-containing subtypes. We have evaluated the pharmacological profile of PhTX-74 and related polyamine toxins at homo- and heteromeric AMPARs in the presence and absence of γ-2. Determination of IC50 values for inhibition of glutamate-evoked currents from Xenopus oocytes expressing recombinant homo- or heteromeric combinations of GluA1, GluA2, and GluA3 in the presence of γ-2 shows that PhTX-74 inhibits homomeric GluA1 and GluA3 receptors nonselectively, with IC50 values in the nanomolar range (252-356 nM), and heteromeric GluA1/A2 and GluA2/A3 receptors nonselectively, with IC50 values in the micromolar range (22 μM). Thus, in contrast to earlier findings, we find that PhTX-74 cannot pharmacologically discriminate between GluA2-containing AMPAR subtypes.
Bidragets oversatte titel | Evaluering af PhTX-74 som subtype-selektiv inhibitor af GluA2-indeholdende AMPA receptorer |
---|---|
Originalsprog | Engelsk |
Tidsskrift | Molecular Pharmacology |
Vol/bind | 85 |
Udgave nummer | 2 |
Sider (fra-til) | 261-268 |
Antal sider | 8 |
ISSN | 0026-895X |
DOI | |
Status | Udgivet - feb. 2014 |
Emneord
- Det Sundhedsvidenskabelige Fakultet