Estimation bias and bias correction in reduced rank autoregressions

Heino Bohn Nielsen*

*Corresponding author af dette arbejde
    1 Citationer (Scopus)

    Abstract

    This paper characterizes the finite-sample bias of the maximum likelihood estimator (MLE) in a reduced rank vector autoregression and suggests two simulation-based bias corrections. One is a simple bootstrap implementation that approximates the bias at the MLE. The other is an iterative root-finding algorithm implemented using stochastic approximation methods. Both algorithms are shown to be improvements over the MLE, measured in terms of mean square error and mean absolute deviation. An illustration to US macroeconomic time series is given.

    OriginalsprogEngelsk
    TidsskriftEconometric Reviews
    Vol/bind38
    Udgave nummer3
    Sider (fra-til) 332-349
    Antal sider18
    ISSN0747-4938
    DOI
    StatusUdgivet - 16 mar. 2019

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Estimation bias and bias correction in reduced rank autoregressions'. Sammen danner de et unikt fingeraftryk.

    Citationsformater