Abstract
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded, open, simply connected domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant magnetic field.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Mathematical Analysis and Applications |
Vol/bind | 439 |
Udgave nummer | 1 |
Sider (fra-til) | 330-346 |
ISSN | 0022-247X |
DOI | |
Status | Udgivet - 1 jul. 2016 |