Estimates for the lowest eigenvalue of magnetic Laplacians

Tomas Ekholm, Hynek Kovařík, Fabian Daniel Portmann

6 Citationer (Scopus)

Abstract

We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded, open, simply connected domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant magnetic field.

OriginalsprogEngelsk
TidsskriftJournal of Mathematical Analysis and Applications
Vol/bind439
Udgave nummer1
Sider (fra-til)330-346
ISSN0022-247X
DOI
StatusUdgivet - 1 jul. 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Estimates for the lowest eigenvalue of magnetic Laplacians'. Sammen danner de et unikt fingeraftryk.

Citationsformater