Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans

Li Zhang, Martin Iain Bahl, Henrik Munch Roager, Cilius Esmann Fonvig, Lars I Hellgren, Henrik Lauritz Frandsen, Oluf Pedersen, Jens-Christian Holm, Torben Hansen, Tine Rask Licht

35 Citationer (Scopus)

Abstract

Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human-derived microbiotas in mice, factors affecting this process and resulting impact on metabolic health. We thus transplanted faecal microbiotas from humans (16 obese and 16 controls) separately into 64 germ-free Swiss Webster mice caged in pairs within four isolators, with two isolators assigned to each phenotype, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread of microbes contributes to the development of metabolic traits. This is of major importance for design of animal studies, and indicates that environmental transfer of microbes between individuals may affect host metabolic traits.

OriginalsprogEngelsk
TidsskriftThe ISME Journal
Vol/bind11
Sider (fra-til)676-690
Antal sider15
ISSN1751-7362
DOI
StatusUdgivet - 1 mar. 2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans'. Sammen danner de et unikt fingeraftryk.

Citationsformater