Engineering dynamic pathway regulation using stress-response promoters

Robert H Dahl, Fuzhong Zhang, Jorge Alonso-Gutierrez, Edward Baidoo, Tanveer S Batth, Alyssa M Redding-Johanson, Christopher J Petzold, Aindrila Mukhopadhyay, Taek Soon Lee, Paul D Adams, Jay D Keasling

296 Citationer (Scopus)

Abstract

Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.
OriginalsprogEngelsk
TidsskriftNature Biotechnology
ISSN1087-0156
DOI
StatusUdgivet - nov. 2013
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Engineering dynamic pathway regulation using stress-response promoters'. Sammen danner de et unikt fingeraftryk.

Citationsformater