@article{ff8c73b0f1f111ddbf70000ea68e967b,
title = "Efficient segmentation by sparse pixel classification",
abstract = "Segmentation methods based on pixel classification are powerful but often slow. We introduce two general algorithms, based on sparse classification, for optimizing the computation while still obtaining accurate segmentations. The computational costs of the algorithms are derived, and they are demonstrated on real 3-D magnetic resonance imaging and 2-D radiograph data. We show that each algorithm is optimal for specific tasks, and that both algorithms allow a speedup of one or more orders of magnitude on typical segmentation tasks.",
author = "Dam, {Erik Bj{\o}rnager} and Marco Loog",
note = "Keywords: Algorithms; Artificial Intelligence; Cluster Analysis; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity",
year = "2008",
doi = "10.1109/TMI.2008.923961",
language = "English",
volume = "27",
pages = "1525--1534",
journal = "IEEE Transactions on Medical Imaging",
issn = "0278-0062",
publisher = "Institute of Electrical and Electronics Engineers",
number = "10",
}