Effects of City-Size Heterogeneity on Epidemic Spreading in a Metapopulation: A Reaction-Diffusion Approach

Halvor Lund, George Ludvig Lizana, Ingve Simonsen

12 Citationer (Scopus)

Abstract

We review and introduce a generalized reaction-diffusion approach to epidemic spreading in a metapopulation modeled as a complex network. The metapopulation consists of susceptible and infected individuals that are grouped in subpopulations symbolizing cities and villages that are coupled by human travel in a transportation network. By analytic methods and numerical simulations we calculate the fraction of infected people in the metapopulation in the long time limit, as well as the relevant parameters characterizing the epidemic threshold that separates an epidemic from a non-epidemic phase. Within this model, we investigate the effect of a heterogeneous network topology and a heterogeneous subpopulation size distribution. Such a system is suited for epidemic modeling where small villages and big cities exist simultaneously in the metapopulation. We find that the heterogeneous conditions cause the epidemic threshold to be a non-trivial function of the reaction rates (local parameters), the network's topology (global parameters) and the cross-over population size that separates "village dynamics" from "city dynamics".

OriginalsprogEngelsk
TidsskriftJournal of Statistical Physics
Vol/bind151
Udgave nummer2
Sider (fra-til)367-382
ISSN0022-4715
DOI
StatusUdgivet - 1 apr. 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Effects of City-Size Heterogeneity on Epidemic Spreading in a Metapopulation: A Reaction-Diffusion Approach'. Sammen danner de et unikt fingeraftryk.

Citationsformater