TY - JOUR
T1 - Effects and relationships of grazing intensity on multiple ecosystem services in the Inner Mongolian steppe
AU - Fan, Fan
AU - Liang, Cunzhu
AU - Tang, Yongkang
AU - Harker-Schuch, Inez
AU - Porter, John R.
PY - 2019/7/20
Y1 - 2019/7/20
N2 - Grassland ecosystems are one of the most important terrestrial ecosystems in the world, producing essential both goods and ecosystem services (ES) for human beings. The Inner Mongolian steppe is a major grassland ecosystem in Northern China, covering 13.5% of the northern Chinese grassland area, and playing important ecological roles for the adjacent region of the capital Beijing-Tianjin-Hebei. Quantification of grassland ES under the different utilization patterns is vital for the maintenance of multiple ES and mitigation against ES loss in this region. We made a manipulative experiment with four grazing intensities (grazing exclusion, GE; light grazing intensity, LG; medium grazing intensity, MG; heavy grazing intensity, HG). We then quantified the intensities of eight different grassland ES (1. herbage intake, HT; 2. biodiversity conservation, BI; 3. soil nutrient retention, SN; 4 soil carbon stocks SC; 5. soil erosion prevention, SEP; 6. soil water storage, SWC; 7. potential nutrient recycling, PNC; 8. carbon sequestration from atmosphere. CS) and total ES via a series of field measurements. Pearson coefficients and trade-offs index were used to access the above ES relationships and degree of trade-offs between ES. Grazing intensities significantly (p < 0.05) affected the grassland intensities of ‘regulating’, ‘culture’ and ‘provisioning’ services, but the ‘supporting’ services. We found three types of relationships (trade-offs, synergy or neutral) have been found in this study. Trade-offs occurred between ‘provisioning’ and ‘regulating’ services. Although GE management presented significantly higher intensity of total ES (0.64) than LG (0.52), LG management significantly weakened the trade-offs between ‘provisioning’ and ‘regulating’ services (Trade-offs index 0.22) in comparison with GE (Trade-offs index 11.02). Our study suggests, therefore, that LG is the most suitable grassland utilization practice in the Inner Mongolian steppe.
AB - Grassland ecosystems are one of the most important terrestrial ecosystems in the world, producing essential both goods and ecosystem services (ES) for human beings. The Inner Mongolian steppe is a major grassland ecosystem in Northern China, covering 13.5% of the northern Chinese grassland area, and playing important ecological roles for the adjacent region of the capital Beijing-Tianjin-Hebei. Quantification of grassland ES under the different utilization patterns is vital for the maintenance of multiple ES and mitigation against ES loss in this region. We made a manipulative experiment with four grazing intensities (grazing exclusion, GE; light grazing intensity, LG; medium grazing intensity, MG; heavy grazing intensity, HG). We then quantified the intensities of eight different grassland ES (1. herbage intake, HT; 2. biodiversity conservation, BI; 3. soil nutrient retention, SN; 4 soil carbon stocks SC; 5. soil erosion prevention, SEP; 6. soil water storage, SWC; 7. potential nutrient recycling, PNC; 8. carbon sequestration from atmosphere. CS) and total ES via a series of field measurements. Pearson coefficients and trade-offs index were used to access the above ES relationships and degree of trade-offs between ES. Grazing intensities significantly (p < 0.05) affected the grassland intensities of ‘regulating’, ‘culture’ and ‘provisioning’ services, but the ‘supporting’ services. We found three types of relationships (trade-offs, synergy or neutral) have been found in this study. Trade-offs occurred between ‘provisioning’ and ‘regulating’ services. Although GE management presented significantly higher intensity of total ES (0.64) than LG (0.52), LG management significantly weakened the trade-offs between ‘provisioning’ and ‘regulating’ services (Trade-offs index 0.22) in comparison with GE (Trade-offs index 11.02). Our study suggests, therefore, that LG is the most suitable grassland utilization practice in the Inner Mongolian steppe.
KW - Bio-physical quantification
KW - Ecosystem services
KW - Grazing intensity
KW - Inner Mongolian steppe
KW - Trade-offs
UR - http://www.scopus.com/inward/record.url?scp=85064698792&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2019.04.279
DO - 10.1016/j.scitotenv.2019.04.279
M3 - Journal article
C2 - 31035202
AN - SCOPUS:85064698792
SN - 0048-9697
VL - 675
SP - 642
EP - 650
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -