Abstract
Background: Nalmefene is an orally administered competitive opioid receptor antagonist targeted at reducing alcohol consumption in alcohol-dependent patients. As part of the regulatory requirements for drug approval, the potential of novel compounds for causing unwanted proarrhythmia should be studied in a thoroughly designed clinical QT/corrected QT (QTc) study (International Conference on Harmonisation [ICH] E14 guideline). Objective: This study was designed to evaluate whether nalmefene 20 and 80mg/day induced changes in cardiac repolarization biomarkers indicative of proarrhythmia (the QTc interval and T-wave morphology). Methods: This was a prospective, randomized, double-blind, parallel-group, placebo- and moxifloxacin-controlled, single-centre study carried out in a clinical pharmacology unit. The study included 270 healthy male and female subjects (age 1845 years). The subjects were randomized to a 7-day treatment period of placebo, nalmefene 20 mg/day or nalmefene 80mg/day, or placebo for 6 days followed by a single dose of moxifloxacin 400 mg on day 7. Serial triplicate ECGs were obtained over a 24-hour period at protocoldefined time-points. The primary protocol-defined endpoint was the largest time-matched baseline- and placebo-adjusted mean difference in the individually heart rate-corrected QT interval (QTcNi) recorded at any of the 12 ECG time-points distributed over a 24-hour period on day 7 of treatment. Secondary endpoints included a similar analysis using the Fridericia- (QTcF) and Bazett-corrected (QTcB) intervals. An explorative analysis included quantitative assessment of T-wave morphology using the T-wave morphology composite score (MCS) to assess for differences between treatment groups and placebo on day 7 of treatment. The frequency of outliers in the QTc intervals, the pharmacokinetics of nalmefene and the tolerability of nalmefene were also assessed. Results: Nalmefene was rapidly absorbed with a time to reach maximum plasma concentration of 2.2 hours and a dose-proportionate relationship between dose administered and exposure. The largest baseline- and placeboadjusted mean changes from baseline in the individualized QTcNi (primary endpoint) were 5.45 ms (90% CI 1.52, 9.37) and 5.57 ms (90% CI 1.62, 9.52) for nalmefene 20 and 80mg/day, respectively, with study sensitivity confirmed by the expected largest increase in mean QTcNi of 10.15 ms (90% CI 5.67, 14.63) for moxifloxacin. Quantitative assessment using the T-wave MCS demonstrated the largest baseline- and placebo-adjusted increase in MCS to be non-significantly different from the intra-subject variability of triplicate recordings in the placebo group. No deaths or serious adverse events occurred in the study. Conclusion: This thorough QT/QTc study was a negative study in accordance with the ICH E14 guideline, meaning that nalmefene has no clinically relevant effect on the QTc interval and T-wave morphology. The study predicts no concern over proarrhythmia or need for intensive QTc monitoring with the use of nalmefene in clinical practice.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Clinical Drug Investigation |
Vol/bind | 31 |
Udgave nummer | 11 |
Sider (fra-til) | 799-811 |
Antal sider | 13 |
ISSN | 1173-2563 |
DOI | |
Status | Udgivet - 2011 |