TY - JOUR
T1 - Effect of exercise training on in vivo insulin-stimulated glucose uptake in intra-abdominal adipose tissue in rats
AU - Enevoldsen, L H
AU - Stallknecht, B
AU - Fluckey, J D
AU - Galbo, H
N1 - Keywords: Abdomen; Adipose Tissue; Animals; Blood Glucose; Body Water; Deoxyglucose; Female; Glucose; Insulin; Lactic Acid; Microdialysis; Physical Conditioning, Animal; Rats; Rats, Wistar; Regional Blood Flow
PY - 2000
Y1 - 2000
N2 - Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric) and in subcutaneous AT and also studied the effect of training. Rats were either swim trained (15 wk, n = 9) or sedentary (n = 16). While the rats were under anesthesia, a hyperinsulinemic ( approximately 900 pM), euglycemic clamp was carried out and local glucose uptake was measured by both the 2-deoxy-D-[(3)H]glucose and microdialysis techniques. Blood flow was measured by microspheres. Upon insulin stimulation, blood flow generally decreased in AT. Flow was higher in mesenteric tissue than in other ATs, whereas insulin-mediated glucose uptake did not differ between ATs. Training doubled the glucose infusion rate during hyperinsulinemia, in part, reflecting an effect in muscle. During hyperinsulinemia, interstitial glucose concentrations were lower, glucose uptake per 100 g of tissue was higher in AT in trained compared with sedentary rats, and training influenced glucose uptake identically in all ATs. In conclusion, differences between ATs in insulin sensitivity with respect to glucose uptake do not explain that insulin resistance is associated with intra-abdominal rather than subcutaneous obesity. Furthermore, training may be beneficial by enhancing insulin sensitivity in intra-abdominal fat depots.
AB - Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric) and in subcutaneous AT and also studied the effect of training. Rats were either swim trained (15 wk, n = 9) or sedentary (n = 16). While the rats were under anesthesia, a hyperinsulinemic ( approximately 900 pM), euglycemic clamp was carried out and local glucose uptake was measured by both the 2-deoxy-D-[(3)H]glucose and microdialysis techniques. Blood flow was measured by microspheres. Upon insulin stimulation, blood flow generally decreased in AT. Flow was higher in mesenteric tissue than in other ATs, whereas insulin-mediated glucose uptake did not differ between ATs. Training doubled the glucose infusion rate during hyperinsulinemia, in part, reflecting an effect in muscle. During hyperinsulinemia, interstitial glucose concentrations were lower, glucose uptake per 100 g of tissue was higher in AT in trained compared with sedentary rats, and training influenced glucose uptake identically in all ATs. In conclusion, differences between ATs in insulin sensitivity with respect to glucose uptake do not explain that insulin resistance is associated with intra-abdominal rather than subcutaneous obesity. Furthermore, training may be beneficial by enhancing insulin sensitivity in intra-abdominal fat depots.
M3 - Journal article
C2 - 10644533
SN - 0193-1849
VL - 278
SP - E25-34
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 1
ER -