Abstract
To study the effects of early drought priming at 5th-leaf stage on grain yield and nitrogen-use efficiency in wheat (Triticum aestivum L.) under post-anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential reached ca. −0.9 MPa) at the 5th-leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen-use efficiency (ANUE) of the primed and non-primed plants under post-anthesis drought and heat stress were investigated. Compared with the non-primed plants, the drought-primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post-anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post-anthesis drought and heat stress. Drought priming at vegetative stage improves carbon assimilation and ANUE under post-anthesis drought and heat stress and their combination in wheat, which might be used as a field management tool to enhance stress tolerance of wheat crops to multiple abiotic stresses in a future drier and warmer climate.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Agronomy and Crop Science |
Vol/bind | 203 |
Udgave nummer | 1 |
Sider (fra-til) | 29-40 |
Antal sider | 12 |
ISSN | 0931-2250 |
DOI | |
Status | Udgivet - 1 feb. 2017 |
Emneord
- carbon, drought, high temperature, nitrogen, priming, wheat