DotAligner: Identification and clustering of RNA structure motifs

Martin A. Smith*, Stefan E. Seemann, Xiu Cheng Quek, John S. Mattick

*Corresponding author af dette arbejde
    8 Citationer (Scopus)
    48 Downloads (Pure)

    Abstract

    The diversity of processed transcripts in eukaryotic genomes poses a challenge for the classification of their biological functions. Sparse sequence conservation in non-coding sequences and the unreliable nature of RNA structure predictions further exacerbate this conundrum. Here, we describe a computational method, DotAligner, for the unsupervised discovery and classification of homologous RNA structure motifs from a set of sequences of interest. Our approach outperforms comparable algorithms at clustering known RNA structure families, both in speed and accuracy. It identifies clusters of known and novel structure motifs from ENCODE immunoprecipitation data for 44 RNA-binding proteins.

    OriginalsprogEngelsk
    Artikelnummer244
    TidsskriftGenome Biology
    Vol/bind18
    Udgave nummer1
    Antal sider12
    ISSN1474-7596
    DOI
    StatusUdgivet - dec. 2017

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'DotAligner: Identification and clustering of RNA structure motifs'. Sammen danner de et unikt fingeraftryk.

    Citationsformater