Abstract
A Markov chain Monte Carlo method for estimating the relative effects of migration and isolation on genetic diversity in a pair of populations from DNA sequence data is developed and tested using simulations. The two populations are assumed to be descended from a panmictic ancestral population at some time in the past and may (or may not) after that be connected by migration. The use of a Markov chain Monte Carlo method allows the joint estimation of multiple demographic parameters in either a Bayesian or a likelihood framework. The parameters estimated include the migration rate for each population, the time since the two populations diverged from a common ancestral population, and the relative size of each of the two current populations and of the common ancestral population. The results show that even a single nonrecombining genetic locus can provide substantial power to test the hypothesis of no ongoing migration and/or to test models of symmetric migration between the two populations. The use of the method is illustrated in an application to mitochondrial DNA sequence data from a fish species: the threespine stickleback (Gasterosteus aculeatus).
Originalsprog | Engelsk |
---|---|
Tidsskrift | Genetics |
Vol/bind | 158 |
Udgave nummer | 2 |
Sider (fra-til) | 885-896 |
Antal sider | 12 |
ISSN | 0016-6731 |
Status | Udgivet - 3 jul. 2001 |