Discovering novel hydrolases from hot environments

Roland Wohlgemuth*, Jennifer Littlechild, Daniela Monti, Kirk Schnorr, Teunke van Rossum, Bettina Siebers, Peter Menzel, Ilya V. Kublanov, Anne Gunn Rike, Georgios Skretas, Zalan Szabo, Xu Peng, Mark J. Young

*Corresponding author af dette arbejde
19 Citationer (Scopus)

Abstract

Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.

OriginalsprogEngelsk
TidsskriftBiotechnology Advances
Vol/bind36
Udgave nummer8
Sider (fra-til)2077-2100
ISSN0734-9750
DOI
StatusUdgivet - dec. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Discovering novel hydrolases from hot environments'. Sammen danner de et unikt fingeraftryk.

Citationsformater