TY - JOUR
T1 - Direct observation of the ß-carotene reaction with hydroxyl radical
AU - Chen, Chang-Hui
AU - Han, Rui-Min
AU - Liang, Ran
AU - Fu, Li-Min
AU - Wang, Peng
AU - Ai, Xi-Cheng
AU - Zhang, Jian-Ping
AU - Skibsted, Leif Horsfelt
PY - 2011/3/10
Y1 - 2011/3/10
N2 - Hydroxyl radical reacts readily with β-carotene following submicrosecond laser photolysis of N-hydroxypyridine-2(1H)-thione (N-HPT) as a "photo-Fenton" reagent generating hydroxyl and thiyl radicals in acetonitrile:tetrahydrofuran (4:1, v/v) solution. On the basis of spectral evidence, and supported by kinetic considerations and thermodynamic calculations, a short-lived transient species, detected by time-resolved absorption spectroscopy with an absorption maximum at ∼750 nm and a lifetime of ∼150 ns at 25 °C under anaerobic conditions, is suggested to be the long-sought neutral β-carotene radical formed by hydrogen-atom abstraction. The transient spectrum is different from the spectra of the β-carotene radical cation (∼1000 nm absorption maximum with a millisecond lifetime), the β-carotene radical adducts (∼520 nm, several microsecond lifetime), the β-carotene radical cation ion pair (∼750 nm, several hundred microsecond lifetime), and the β-carotene radical anion (∼880 nm, a few tens of microsecond lifetime). In parallel, β-carotene reacts with the thiyl radical to yield a sulfur radical adduct with absorption maximum at ∼520 nm with a lifetime of 3.0 μs. For astaxanthin and canthaxanthin, the reaction with the thiyl radical dominates and the neutral radical is hardly formed in agreement with the less reducing properties of these 4,4′-diketo carotenoids without the reactive 4,4′-hydrogens.
AB - Hydroxyl radical reacts readily with β-carotene following submicrosecond laser photolysis of N-hydroxypyridine-2(1H)-thione (N-HPT) as a "photo-Fenton" reagent generating hydroxyl and thiyl radicals in acetonitrile:tetrahydrofuran (4:1, v/v) solution. On the basis of spectral evidence, and supported by kinetic considerations and thermodynamic calculations, a short-lived transient species, detected by time-resolved absorption spectroscopy with an absorption maximum at ∼750 nm and a lifetime of ∼150 ns at 25 °C under anaerobic conditions, is suggested to be the long-sought neutral β-carotene radical formed by hydrogen-atom abstraction. The transient spectrum is different from the spectra of the β-carotene radical cation (∼1000 nm absorption maximum with a millisecond lifetime), the β-carotene radical adducts (∼520 nm, several microsecond lifetime), the β-carotene radical cation ion pair (∼750 nm, several hundred microsecond lifetime), and the β-carotene radical anion (∼880 nm, a few tens of microsecond lifetime). In parallel, β-carotene reacts with the thiyl radical to yield a sulfur radical adduct with absorption maximum at ∼520 nm with a lifetime of 3.0 μs. For astaxanthin and canthaxanthin, the reaction with the thiyl radical dominates and the neutral radical is hardly formed in agreement with the less reducing properties of these 4,4′-diketo carotenoids without the reactive 4,4′-hydrogens.
U2 - 10.1012/jp1100889
DO - 10.1012/jp1100889
M3 - Journal article
SN - 1520-6106
VL - 115
SP - 2082
EP - 2089
JO - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
JF - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
IS - 115
ER -