TY - JOUR
T1 - Design, synthesis and evaluation of 4,7-diamino-1,10-phenanthroline G-quadruplex ligands
AU - Nielsen, Mads Corvinius
AU - Borch, Jonas
AU - Ulven, Trond
PY - 2009/12/15
Y1 - 2009/12/15
N2 - A series of 4,7-diamino-1,10-phenanthroline derivatives carrying positively charged side chains has been synthesized, and their G-quadruplex interaction evaluated by circular dichroism (CD) and surface plasmon resonance (SPR). In absence of side chains, 4,7-diamino-1,10-phenanthroline exhibits a weak but significant G-quadruplex stabilizing effect, compared to no stabilization by 1,10-phenanthroline. We hypothesize that this effect is due to increased basicity of the phenanthroline nitrogens and protonation or ion chelation to form a central positive charge which stack on the G-tetrad above the central ionic column. Introduction of positively charged side chains results in compounds with appreciable G-quadruplex stabilizing properties and high aqueous solubility, with the longer side chains giving more potent compounds. Ligands carrying guanidine side chains in general show higher quadruplex stabilizing activity and distinctly slower kinetic properties than their amino and dimethylamino analogues, possibly due to specific hydrogen bond interactions with the G-quadruplex loops.
AB - A series of 4,7-diamino-1,10-phenanthroline derivatives carrying positively charged side chains has been synthesized, and their G-quadruplex interaction evaluated by circular dichroism (CD) and surface plasmon resonance (SPR). In absence of side chains, 4,7-diamino-1,10-phenanthroline exhibits a weak but significant G-quadruplex stabilizing effect, compared to no stabilization by 1,10-phenanthroline. We hypothesize that this effect is due to increased basicity of the phenanthroline nitrogens and protonation or ion chelation to form a central positive charge which stack on the G-tetrad above the central ionic column. Introduction of positively charged side chains results in compounds with appreciable G-quadruplex stabilizing properties and high aqueous solubility, with the longer side chains giving more potent compounds. Ligands carrying guanidine side chains in general show higher quadruplex stabilizing activity and distinctly slower kinetic properties than their amino and dimethylamino analogues, possibly due to specific hydrogen bond interactions with the G-quadruplex loops.
U2 - 10.1016/j.bmc.2009.09.055
DO - 10.1016/j.bmc.2009.09.055
M3 - Journal article
SN - 0968-0896
VL - 17
SP - 8241
EP - 8246
JO - Bioorganic & Medicinal Chemistry
JF - Bioorganic & Medicinal Chemistry
IS - 24
ER -