Dependence among sites in RNA evolution.

Jiaye Yu, Jeffrey L Thorne

30 Citationer (Scopus)

Abstract

Although probabilistic models of genotype (e.g., DNA sequence) evolution have been greatly elaborated, less attention has been paid to the effect of phenotype on the evolution of the genotype. Here we propose an evolutionary model and a Bayesian inference procedure that are aimed at filling this gap. In the model, RNA secondary structure links genotype and phenotype by treating the approximate free energy of a sequence folded into a secondary structure as a surrogate for fitness. The underlying idea is that a nucleotide substitution resulting in a more stable secondary structure should have a higher rate than a substitution that yields a less stable secondary structure. This free energy approach incorporates evolutionary dependencies among sequence positions beyond those that are reflected simply by jointly modeling change at paired positions in an RNA helix. Although there is not a formal requirement with this approach that secondary structure be known and nearly invariant over evolutionary time, computational considerations make these assumptions attractive and they have been adopted in a software program that permits statistical analysis of multiple homologous sequences that are related via a known phylogenetic tree topology. Analyses of 5S ribosomal RNA sequences are presented to illustrate and quantify the strong impact that RNA secondary structure has on substitution rates. Analyses on simulated sequences show that the new inference procedure has reasonable statistical properties. Potential applications of this procedure, including improved ancestral sequence inference and location of functionally interesting sites, are discussed.
Udgivelsesdato: 2006-Aug
OriginalsprogEngelsk
TidsskriftMolecular Biology and Evolution
Vol/bind23
Udgave nummer8
Sider (fra-til)1525-37
Antal sider12
ISSN0737-4038
DOI
StatusUdgivet - 2006

Citationsformater