Demo: elastic mapreduce-style processing of fast data

Kasper Grud Skat Madsen, Yongluan Zhou

3 Citationer (Scopus)

Abstract

MapReduce is a popular scalable processing framework for large-scale data. In this paper we demonstrate Enorm, which represents our efforts on rectifying the traditional batch-oriented MapReduce framework for low-latency data stream processing. Most existing work have focused on how to extend the MapReduce framework for low-latency data stream processing, but overlooked the problem of obtaining runtime elasticity. The demonstration focuses on two important features in Enorm. (1) sharing aggregate computations among overlapping windows and (2) runtime elasticity.

OriginalsprogEngelsk
TitelDEBS’13 : Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems Arlington, TX, USA — June 29 - July 03, 2013
Antal sider2
ForlagAssociation for Computing Machinery
Publikationsdato2013
Sider335-336
ISBN (Trykt)978-1-4503-1758-0
DOI
StatusUdgivet - 2013
Udgivet eksterntJa
Begivenhed7th ACM International Conference on Distributed Event-Based Systems - Arlington, USA
Varighed: 29 jun. 20133 jul. 2013
Konferencens nummer: 7

Konference

Konference7th ACM International Conference on Distributed Event-Based Systems
Nummer7
Land/OmrådeUSA
ByArlington
Periode29/06/201303/07/2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Demo: elastic mapreduce-style processing of fast data'. Sammen danner de et unikt fingeraftryk.

Citationsformater