Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR

Dilip Narayanan, Osman ABSM Gani, Franz XE Gruber, Richard A Engh

    2 Citationer (Scopus)
    100 Downloads (Pure)

    Abstract

    Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however, the data also reveal heterogeneities of structure, subtleties of chemical interactions, and apparent inconsistencies between diverse data types. As a result, incorporation of all relevant data requires expert choices to combine computational and informatics methods, along with human insight. Here we consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug which inhibits these targets will expand relevant patient populations and forestall drug resistance. Crizotinib co-targets ALK and MET. Analysis of the crystal structures reveals few shared interaction types, highlighting proton-arene and key CH–O hydrogen bonding interactions. These are not typically encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan-kinome scaffold. Tests of model compounds show these to be compatible with the goal of ALK, MET, and EGFR polypharmacology.
    OriginalsprogEngelsk
    Artikelnummer43
    TidsskriftJournal of Cheminformatics
    Vol/bind9
    Antal sider19
    ISSN1758-2946
    DOI
    StatusUdgivet - 4 jul. 2017

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR'. Sammen danner de et unikt fingeraftryk.

    Citationsformater