Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

Frederik Köpper, Cathrin Bierwirth, Margarete Schön, Meike Kunze, Ingegerd Elvers, Dominique Kranz, Priyanka Saini, Manoj B Menon, David Walter, Claus Storgaard Sørensen, Matthias Gaestel, Thomas Helleday, Michael P Schön, Matthias Dobbelstein

    51 Citationer (Scopus)

    Abstract

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation. Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling.
    OriginalsprogEngelsk
    TidsskriftPNAS Early Edition
    Vol/bind110
    Udgave nummer42
    Sider (fra-til)16856-61
    Antal sider6
    ISSN0027-8424
    DOI
    StatusUdgivet - 15 okt. 2013

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity'. Sammen danner de et unikt fingeraftryk.

    Citationsformater