TY - JOUR
T1 - Cytochrome P450 1B1 and 2C9 genotypes and risk of ischemic vascular disease, cancer, and chronic obstructive pulmonary disease
AU - Kaur-Knudsen, Diljit
AU - Bojesen, Stig E
AU - Nordestgaard, Børge G
PY - 2012/7
Y1 - 2012/7
N2 - The aim of this review is to summarize present knowledge of genetic variation in cytochrome P450 1B1 (CYP1B1) and 2C9 (CYP2C9) genes and risk of tobacco-related cancer, female cancer, chronic obstructive pulmonary disease and ischemic vascular disease. The CYP1B1 and CYP2C9 enzymes metabolize polycyclic aromatic hydrocarbons found in tobacco smoke and thereby generate disease-causing metabolites suggested to be important in tobacco-related diseases. Furthermore, CYP1B1 also metabolizes estrogen while CYP2C9 metabolizes arachidonic acid, both creating metabolites potentially important in risk of female cancer or ischemic vascular disease. Genetic variation in genes coding for CYP1B1 and CYP2C9 enzymes have shown altered enzyme activity affecting levels of metabolites and thus potentially risk of disease. So far, however, findings have been inconsistent. Recently, large studies on the association between genetic variation in CYP1B1 and CYP2C9 and risk of disease with considerable statistical power rebutted the hypotheses that these genetic variants affect risk of tobacco-related cancer, female cancer, chronic obstructive pulmonary disease and ischemic vascular disease.
AB - The aim of this review is to summarize present knowledge of genetic variation in cytochrome P450 1B1 (CYP1B1) and 2C9 (CYP2C9) genes and risk of tobacco-related cancer, female cancer, chronic obstructive pulmonary disease and ischemic vascular disease. The CYP1B1 and CYP2C9 enzymes metabolize polycyclic aromatic hydrocarbons found in tobacco smoke and thereby generate disease-causing metabolites suggested to be important in tobacco-related diseases. Furthermore, CYP1B1 also metabolizes estrogen while CYP2C9 metabolizes arachidonic acid, both creating metabolites potentially important in risk of female cancer or ischemic vascular disease. Genetic variation in genes coding for CYP1B1 and CYP2C9 enzymes have shown altered enzyme activity affecting levels of metabolites and thus potentially risk of disease. So far, however, findings have been inconsistent. Recently, large studies on the association between genetic variation in CYP1B1 and CYP2C9 and risk of disease with considerable statistical power rebutted the hypotheses that these genetic variants affect risk of tobacco-related cancer, female cancer, chronic obstructive pulmonary disease and ischemic vascular disease.
U2 - 10.2174/157016112800812746
DO - 10.2174/157016112800812746
M3 - Journal article
SN - 1570-1611
VL - 10
SP - 512
EP - 520
JO - Current Vascular Pharmacology
JF - Current Vascular Pharmacology
IS - 4
ER -