Cuspidal integrals for SL(3)∕Kϵ

Mogens Flensted-Jensen, Job J. Kuit*

*Corresponding author af dette arbejde
1 Citationer (Scopus)

Abstract

We show that for the symmetric spaces SL(3,R)∕SO(1,2)e and SL(3,C)∕SU(1,2) the cuspidal integrals are absolutely convergent. We further determine the behavior of the corresponding Radon transforms and relate the kernels of the Radon transforms to the different series of representations occurring in the Plancherel decomposition of these spaces. Finally we show that for the symmetric space SL(3,H)∕Sp(1,2) the cuspidal integrals are not convergent for all Schwartz functions.

OriginalsprogEngelsk
TidsskriftIndagationes Mathematicae
Vol/bind29
Udgave nummer5
Sider (fra-til)1235-1258
Antal sider24
ISSN0019-3577
DOI
StatusUdgivet - 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Cuspidal integrals for SL(3)∕Kϵ'. Sammen danner de et unikt fingeraftryk.

Citationsformater