Correlations and Non-Linear Probability Models

Richard Breen, Anders Holm, Kristian Bernt Karlson

27 Citationer (Scopus)
2382 Downloads (Pure)

Abstract

Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.
OriginalsprogEngelsk
TidsskriftSociological Methods & Research
Vol/bind43
Udgave nummer4
Sider (fra-til)571-605
Antal sider35
ISSN0049-1241
DOI
StatusUdgivet - 12 nov. 2014

Emneord

  • Det Samfundsvidenskabelige Fakultet

Fingeraftryk

Dyk ned i forskningsemnerne om 'Correlations and Non-Linear Probability Models'. Sammen danner de et unikt fingeraftryk.

Citationsformater