Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure

Ines Marques Nunes, Samuel Jehan Auguste Jacquiod, Asker Daniel Brejnrod, Peter Engelund Holm, Anders Johansen, Kristian Koefoed Brandt, Anders Priemé, Søren Johannes Sørensen

81 Citationer (Scopus)

Abstract

Copper has been intensively used in industry and agriculture since mid-18(th) century and is currently accumulating in soils. We investigated the diversity of potential active bacteria by 16S rRNA gene transcript amplicon sequencing in a temperate grassland soil subjected to century-long exposure to normal (∼15 mg kg(-1)), high (∼450 mg kg(-1)) or extremely high (∼4500 mg kg(-1)) copper levels. Results showed that bioavailable copper had pronounced impacts on the structure of the transcriptionally active bacterial community, overruling other environmental factors (e.g. season and pH). As copper concentration increased, bacterial richness and evenness were negatively impacted, while distinct communities with an enhanced relative abundance of Nitrospira and Acidobacteria members and a lower representation of Verrucomicrobia, Proteobacteria and Actinobacteria were selected. Our analysis showed the presence of six functional response groups (FRGs), each consisting of bacterial taxa with similar tolerance response to copper. Furthermore, the use of FRGs revealed that specific taxa like the genus Nitrospira and several Acidobacteria groups could accurately predict the copper legacy burden in our system, suggesting a potential promising role as bioindicators of copper contamination in soils.

OriginalsprogEngelsk
Artikelnummerfiw175
TidsskriftF E M S Microbiology Ecology
Vol/bind92
Udgave nummer11
Antal sider12
ISSN0168-6496
DOI
StatusUdgivet - 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure'. Sammen danner de et unikt fingeraftryk.

Citationsformater