Continuation methods and curriculum learning for learning to rank

Nicola Ferro, Maria Maistro, Claudio Lucchese, Raffaele Perego

4 Citationer (Scopus)

Abstract

In this paper we explore the use of Continuation Methods and Curriculum Learning techniques in the area of Learning to Rank. The basic idea is to design the training process as a learning path across increasingly complex training instances and objective functions. We propose to instantiate continuation methods in Learning to Rank by changing the IR measure to optimize during training, and we present two different curriculum learning strategies to identify easy training examples. Experimental results show that simple continuation methods are more promising than curriculum learning ones since they allow for slightly improving the performance of state-of-the-art ?-MART models and provide a faster convergence speed.

OriginalsprogEngelsk
TitelCIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
RedaktørerNorman Paton, Selcuk Candan, Haixun Wang, James Allan, Rakesh Agrawal, Alexandros Labrinidis, Alfredo Cuzzocrea, Mohammed Zaki, Divesh Srivastava, Andrei Broder, Assaf Schuster
Antal sider4
ForlagAssociation for Computing Machinery, Inc.
Publikationsdato17 okt. 2018
Sider1523-1526
ISBN (Elektronisk)9781450360142
DOI
StatusUdgivet - 17 okt. 2018
Udgivet eksterntJa
Begivenhed27th ACM International Conference on Information and Knowledge Management, CIKM 2018 - Torino, Italien
Varighed: 22 okt. 201826 okt. 2018

Konference

Konference27th ACM International Conference on Information and Knowledge Management, CIKM 2018
Land/OmrådeItalien
ByTorino
Periode22/10/201826/10/2018
SponsorACM SIGIR, ACM SIGWEB

Fingeraftryk

Dyk ned i forskningsemnerne om 'Continuation methods and curriculum learning for learning to rank'. Sammen danner de et unikt fingeraftryk.

Citationsformater