TY - JOUR
T1 - Conidia-based fluorescence quantification of Streptomyces
AU - Podduturi, Raju
AU - Jørgensen, Niels O. G.
N1 - Copyright © 2018 Elsevier B.V. All rights reserved.
PY - 2018
Y1 - 2018
N2 - Determination of cell numbers in filamentous bacteria, such as Streptomyces, is challenging due to the tangled and twisted structure of the filaments and formation of cell clumps in liquid cultures. Here, we developed a conidia-based approach, in which fluorescence of conidia, after staining with the DNA-binding stain SYBR Green 1, was related to SYBR Green 1 fluorescence of DNA in Streptomyces. When cell number in Streptomyces filaments, determined by the conidia assay, was compared to number obtained by a qPCR assay, 34 to 62% of cells in the Streptomyces filaments were recovered. The difference in numbers probably reflects an insufficient extraction of DNA from the Gram-positive bacteria, rather than underestimation of the actual cell number by the conidia-based determination. The conidia-based approach appears to be a fast and reliable procedure for counting cell numbers in Streptomyces filaments but it can also be used for other filamentous bacteria, if proper standard curves can be made.
AB - Determination of cell numbers in filamentous bacteria, such as Streptomyces, is challenging due to the tangled and twisted structure of the filaments and formation of cell clumps in liquid cultures. Here, we developed a conidia-based approach, in which fluorescence of conidia, after staining with the DNA-binding stain SYBR Green 1, was related to SYBR Green 1 fluorescence of DNA in Streptomyces. When cell number in Streptomyces filaments, determined by the conidia assay, was compared to number obtained by a qPCR assay, 34 to 62% of cells in the Streptomyces filaments were recovered. The difference in numbers probably reflects an insufficient extraction of DNA from the Gram-positive bacteria, rather than underestimation of the actual cell number by the conidia-based determination. The conidia-based approach appears to be a fast and reliable procedure for counting cell numbers in Streptomyces filaments but it can also be used for other filamentous bacteria, if proper standard curves can be made.
U2 - 10.1016/j.mimet.2018.09.010
DO - 10.1016/j.mimet.2018.09.010
M3 - Journal article
C2 - 30244124
SN - 0167-7012
VL - 153
SP - 104
EP - 107
JO - Journal of Microbiological Methods
JF - Journal of Microbiological Methods
ER -