Conditional shape models for cardiac motion estimation

Coert Metz, Nora Baka, Hortense Kirisli, Michiel Schaap, Theo van Walsum, Stefan Klein, Lisan Neefjes, Nico Mollet, Boudewijn Lelieveldt, Marleen de Bruijne, Wiro Niessen

10 Citationer (Scopus)

Abstract

We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic alignment of pre-operative CTA data with intra-operative X-ray imaging. Due to a trend towards prospective electrocardiogram gating techniques, 4D imaging data, from which motion information could be extracted, is not commonly available. The prediction of motion from shape information is thus relevant for this purpose. Evaluation of the accuracy of the predicted motion was performed using CTA scans of 50 patients, showing an average accuracy of 1.1 mm.
OriginalsprogEngelsk
TitelMedical Image Computing and Computer-Assisted Intervention - MICCAI 2010 : 13th International Conference, Beijing, China, September 20-24, 2010, Proceedings, Part I
RedaktørerTianzi Jiang, Nassir Navab, Josien P. W. Pluim, Max A. Viergever
Antal sider8
Vol/bindPart I
ForlagSpringer
Publikationsdato2010
Sider452-459
ISBN (Trykt)978-3-642-15704-2
ISBN (Elektronisk)978-3-642-15705-9
DOI
StatusUdgivet - 2010
Begivenhed13th International Conference on Medical Image Computing and Computer Assisted Intervention - Beijing, Kina
Varighed: 20 sep. 201024 sep. 2010
Konferencens nummer: 13

Konference

Konference13th International Conference on Medical Image Computing and Computer Assisted Intervention
Nummer13
Land/OmrådeKina
ByBeijing
Periode20/09/201024/09/2010
NavnLecture notes in computer science
Nummer6361
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Conditional shape models for cardiac motion estimation'. Sammen danner de et unikt fingeraftryk.

Citationsformater