Computing the stretch factor and maximum detour of paths, trees, and cycles in the normed space

Christian Wulff-Nilsen, Ansgar Grüne, Rolf Klein, Elmar Langetepe, D. T. Lee, Tien Ching Lin*, Sheung Hung Poon, Teng Kai Yu

*Corresponding author af dette arbejde

Abstract

The stretch factor and maximum detour of a graph G embedded in a metric space measure how well G approximates the minimum complete graph containing G and the metric space, respectively. In this paper we show that computing the stretch factor of a rectilinear path in L 1 plane has a lower bound of Ω(n log n) in the algebraic computation tree model and describe a worst-case O(σn log 2 n) time algorithm for computing the stretch factor or maximum detour of a path embedded in the plane with a weighted fixed orientation metric defined by σ < 2 vectors and a worst-case O(n log d n) time algorithm to d < 3 dimensions in L 1-metric. We generalize the algorithms to compute the stretch factor or maximum detour of trees and cycles in O(σn log d+1 n) time. We also obtain an optimal O(n) time algorithm for computing the maximum detour of a monotone rectilinear path in L 1 plane.

OriginalsprogEngelsk
TidsskriftInternational Journal of Computational Geometry and Applications
Vol/bind22
Udgave nummer1
Sider (fra-til)45-60
Antal sider16
ISSN0218-1959
DOI
StatusUdgivet - 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Computing the stretch factor and maximum detour of paths, trees, and cycles in the normed space'. Sammen danner de et unikt fingeraftryk.

Citationsformater